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of diabetic cardiomyopathy: focus 
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Abstract 

Among the complications of diabetes, cardiovascular events and cardiac insufficiency are considered two of the most 
important causes of death. Experimental and clinical evidence supports the effectiveness of SGLT2i for improving car-
diac dysfunction. SGLT2i treatment benefits metabolism, microcirculation, mitochondrial function, fibrosis, oxidative 
stress, endoplasmic reticulum stress, programmed cell death, autophagy, and the intestinal flora, which are involved in 
diabetic cardiomyopathy. This review summarizes the current knowledge of the mechanisms of SGLT2i for the treat-
ment of diabetic cardiomyopathy.
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Introduction
Diabetes may have been recognized more than 3000 years 
ago [1], and the incidence and prevalence of this ancient 
disease have increased with improvements in living and 
health standards. Currently, 1 in 11 people has diabetes, 
which is 4 times more frequent than 30 years ago [2]. In 
addition to eye, kidney, and foot disease, chronic hyper-
glycaemia can damage the myocardium, which manifests 
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as diabetic cardiomyopathy. The pathology of diabetic 
cardiomyopathy includes abnormal carbohydrate and 
fatty acid metabolism, microvascular disease, endothe-
lial dysfunction, mitochondrial dysfunction, myocardial 
diastolic dysfunction and fibrosis, excessive cardiomyo-
cyte programmed cell death, increased oxidative stress, 
endoplasmic reticulum (ER) stress, and glycotoxicity 
[3–5]. Adverse responses to abnormal blood glucose lead 
to structural remodelling and impaired function in the 
heart. Diabetic cardiomyopathy is known to significantly 
increase the risk of heart failure and can lead to a pre-
served or reduced ejection fraction [6].

Sodium-glucose cotransporter 2 inhibitors (SGLT2is) 
have long been used as drugs to treat diabetes and have 
recently been shown to improve cardiac function in dia-
betes. In a randomized controlled trial, dapagliflozin 
reduced heart failure by 27% in T2DM (type 2 diabetes 
mellitus) patients with cardiovascular disease. The effec-
tiveness was 35% for empagliflozin and 33% for canagli-
flozin [7]. This review focuses on the benefits of SGLT2i 
for cardiomyopathy in diabetes, including the mechanism 
(Table 1). Future prospects are also discussed.

SGLT2i and improved heart function
The first SGLT inhibitor was dihydrochalcone phlorizin, 
which is a nonselective SGLT inhibitor extracted from 
apple tree roots [8]. Dihydrochalcone phlorizin contains 
a glucose moiety and an aglycone in which two aromatic 
carbocycles are joined by an alkyl spacer. Later, the aro-
matic O-glycoside sergliflozin and the aromatic C-gly-
coside dapagliflozin officially opened the era of selective 
SGLT inhibitors [9]. The available SGLT2i are function-
ally similar but differ in selectivity, efficacy, and indica-
tion. For example, empagliflozin, dapagliflozin, and 
canagliflozin are 2600, 1200, and 150  times more selec-
tive for SGLT2 than for SGLT1 [10]. Ipragliflozin and 
dapagliflozin were approved to treat T1DM (type 1 dia-
betes mellitus) and T2DM, but most other SGLT2i were 
approved to treat only T2DM [10]. There are also some 
obvious differences among them; for example, compared 
with dapagliflozin and empagliflozin, canagliflozin has a 
stronger inhibitory effect on angiogenesis [11, 12].

The ways in which SGLT2 functions in the heart are 
not fully understood. SGLT1 is expressed by cardio-
myocytes and may be a target of SGLT2i that improves 
heart failure [13]. Inhibiting SGLT1 with canagliflozin 
was shown to reduce nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase activity in cardiomyocytes, 
thereby inhibiting the production of superoxide and 
decreasing inflammation [13]. SGLT2i may be useful as a 
first-line treatment for heart failure that is not only medi-
ated by their target receptors. For example, dapagliflozin 

and canagliflozin were reported to directly inhibit Na+/
H+ exchanger-1 (NHE1) and abrogate the increase in 
cytosolic Na+ in cardiomyocytes. Direct activation of 
AMP-activated protein kinase (AMPK) by dapagliflozin 
could reduce lipopolysaccharide (LPS)-induced myo-
cardial fibrosis. That kind of intermolecular interaction 
is not dependent on SGLT2i-mediated inhibition of the 
sodium-glucose cotransporter [14]. Other studies have 
shown that the cardiac sodium channel Nav1.5 was a tar-
get of SGLT2i and that inhibiting sodium channels ame-
liorated dysfunctional sodium and calcium homeostasis, 
improved calcium overload, and decreased the incidence 
of malignant arrhythmias [15]. Ongoing study of SGLT2i 
is expected to reveal additional mechanisms of action.

SGLT2i and the regulation of heart metabolism
Disorders of glucose and fatty acid metabolism are prom-
inent features of diabetic cardiomyopathy. Under normal 
conditions, fatty acids are the first-choice energy source 
and account for 70–90% of the ATP produced by cardio-
myocytes. Although each molecule of fatty acid produces 
more ATP than glucose, complete oxidation requires 
more oxygen. When the same amount of oxygen is con-
sumed, fatty acids produce less ATP than glucose (2.33 
vs. 2.58) [16]. However, compared with the absence of 
diabetes, oxidative metabolism in cardiomyocytes under 
diabetic conditions consumes a higher percentage of fatty 
acids and a lower percentage of glucose [17], and there is 
an increase in the use of ketone bodies [18]. The presence 
of diabetes increases oxygen consumption and decreases 
efficiency in the heart [17].

SGLT2i and myocardial glucose utilization
Evidence of the regulation of glucose uptake and utiliza-
tion by SGLT2i may provide ideas for further research. 
The glucose transporter (GLUT) isoforms GLUT4 and 
GLUT1 are predominant in the heart [19]. The mecha-
nism of action is not known, but data show that SGLT2i 
benefit myocardial energy metabolism. Empagliflozin has 
been shown to increase glucose uptake in the human and 
murine myocardium that was associated with increased 
GLUT1 expression [20]. Empagliflozin was also reported 
to increase glycolysis and glucose oxidation rates in the 
myocardium of db/db mice [21].

SGLT2i and myocardial fat metabolism
The dominant carnitine O-palmitoyltransferase (CPT) 
isoform in the heart is CPT1b. It is located on the outer 
mitochondrial membrane and catalyses carnitine conju-
gation of long-chain fatty acids, which facilitates mito-
chondrial transport and β-oxidation in cardiomyocytes 
[22]. In a rat diabetes model, CPT1b expression in myo-
cardial tissues was significantly increased compared 
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Table 1  Therapeutic targets of SGLT2i in basic science trials

Drug Target Organ or tissue Model Effect

Empagliflozin GLUT1 Heart Isolated failing human and 
murine cardiomyocytes

Improve glucose metabolism 
[1]

Empagliflozin HMGCS2 Liver, kidney and jejunum Normal and db/db mice Increase serum ketone bodies 
[2]

Empagliflozin CPT1b Heart Otsuka long-evans 
tokushima fatty rats

Reduce fatty acid utilization 
[3]

Empagliflozin PPARγ/CD36 Heart Zucker diabetic fatty rats Reduce the accumulation of 
fatty acids [4]

Canagliflozin PPAR-α Adipose tissue Obese mice due to a high-
fat diet

Decrease plasma TG and 
TC [5]

Dapagliflozin Drp1 Heart High-fat diet-induced 
insulin-resistant obesity rats

Inhibit mitochondrial fission 
[6]

Dapagliflozin, Empagliflozin MFN1/MFN2 and OPA1 Heart Metabolic syndrome rats; 
high-fat diet/STZ-induced 
diabetic rats

Inhibit mitochondrial fission 
[7, 8]

Empagliflozin PGC-1a, NRF-1 and mtTFA Heart High-fat diet/STZ-induced 
diabetic rats

Promote mitochondrial 
biogenesis [8]

Empagliflozin, Dapagliflozin, 
Canagliflozin

ETC complex I and II Human RPTEC/TERT1 cells Normal Improve the activity of ETC 
complex I and II (Canagliflozin 
reduce the activity of ETC 
complex I) [9]

Dapagliflozin O-GlcNAc transferase Kidney STZ-induced diabetic rats May improve the activity of 
ETC complexes [10]

Empagliflozin Phenotype polarization of 
macrophages

The aorta Mouse model of atheroscle-
rosis with diabetes

Reduce atherosclerosis [11, 
12]

Empagliflozin AT1R and ACE Coronary artery endothe-
lium

High glucose-treated por-
cine coronary artery

Delay endothelial cell senes-
cence [13]

Luseogliflozin GLUT9 isoform 2 Xenopus laevis oocytes Cells were injected with 
0.1–25 ng of cRNA of GLUT9 
isoform 2

Reduce uric acid [14]

Empagliflozin COX-2 The aorta STZ-induced diabetes rats Improve vascular dysfunc-
tion [15]

Dapagliflozin PKG/Kv channels The rabbit aorta Normal Improve vascular dysfunc-
tion [16]

Dapagliflozin; empagliflozin TNF-α/ROS/NO Human coronary arterial 
endothelial cells

TNF-α stimulation Improve vascular dysfunc-
tion [17]

empagliflozin L-arginine/NO Coronary arteries ob/ob−/− mice Improve vascular dysfunc-
tion [18]

Empagliflozin; canagliflozin NHE1 Coronary arteries Normal mice Improve vascular dysfunc-
tion [19]

Empagliflozin AMP/ATP/AMPK/Drp1 Heart STZ-induced diabetic mice Increase the number of 
CD31 + microvessels [20]

Empagliflozin AGEs/RAGE/PKC-ζ/MAPK Kidney STZ-induced diabetic rats Inhibit fibrosis [21]

Empagliflozin TGF-β/SMAD Heart Genetic type 2 diabetes 
mouse model

Inhibit fibrosis [22]

Dapagliflozin STAT3 Heart Myocardial infarction in rats Inhibit fibrosis [23]

Empagliflozin NO/sGC-cGMP/PKG path-
way [24, 25]

Heart Human and murine HFpEF 
myocardium

Reduce cardiomyocyte stiff-
ness [26]

Empagliflozin Nrf2/ARE pathway Heart Genetic type 2 diabetes 
mouse model

Inhibit oxidative stress [22]

Canagliflozin AMPK/Akt/eNOS Heart ISO-induced oxidative stress 
in rats

Inhibit oxidative stress [27]

Canagliflozin iNOS, NOX4 Heart ISO-induced oxidative stress 
in rats

Inhibit oxidative stress [27]

Empagliflozin Sirt1/Nrf2; Sirt1/Foxo1 [28, 
29]

Liver and kidney Otsuka long-evans tokush-
ima fatty rats, rats with 
induced insulin resistance

Inhibit oxidative stress [30, 31]
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with that in nondiabetic controls. As previously stated, 
increased fatty acid utilization increases the oxygen 
requirements of cardiomyocytes. However, the mRNA 
and protein expression of CPT1b was reduced by subcu-
taneous injection of empagliflozin [23], which indicates 
that SGLT2i improved cardiomyocyte energy metabolism 
by reducing fatty acid utilization.

Peroxisome proliferator-activated receptors (PPARs) 
are a superfamily of nuclear receptor proteins that act 
as transcription factors and have at least three isoforms: 
α, δ and γ. Empagliflozin inhibits the mRNA and pro-
tein expression of PPAR-γ in the kidney [24]. Most likely 
because of the same effect, it decreases the expression 
of CD36, which is the downstream molecule of PPAR-γ, 
in cardiac tissue [25] and reduces the uptake and accu-
mulation of fatty acids [26]. When activated, PPAR-α 
promotes the use of fatty acids and reduces the use of 
glucose [27]. SGLT2i do not directly decrease PPAR-α 
mRNA expression in the myocardium [23] but promote 
PPAR-α mRNA and protein expression in adipose tissue 
and decrease the concentrations of triglycerides (TG) and 
total cholesterol (TC) in plasma [28]. Adiponectin is a 
peptide that is secreted by adipocytes, and its effects on 
lipid metabolism are reflected by a negative correlation 
with serum TG and association with increased utilization 
of glucose and fatty acids by muscle tissue [29]. A system-
atic review and meta-analysis of randomized controlled 
trials showed that SGLT2i increased adiponectin levels 
in T2DM [30]. It has been proven that abnormal TC and 
TG levels are closely related to diabetes [31]. The control 

of lipid metabolism not only helps to prevent cardiovas-
cular events but also improves left ventricle systolic dys-
function [32, 33].

SGLT2i and myocardial ketone body metabolism
Fatty acids and glucose are the major fuels in the nor-
mal heart. Ketone bodies are a minor energy source. In 
diabetes patients, insulin resistance decreases glucose 
transport and availability as an energy source. As a result, 
cardiomyocytes increase their utilization of the ketone 
body beta-hydroxybutyrate (β-OHB) [18]. SGLT2i have 
been shown to increase myocardial utilization of ketone 
bodies to increase ATP production. Verma et  al. [21] 
showed that overall cardiac ATP production was 36% 
lower in db/db mice than in C57BL/6  J mice and that 
empagliflozin increased cardiac ATP production by 31% 
compared with that in untreated db/db mice. Strangely, 
empagliflozin did not directly improve the efficiency 
of myocardial ketone body utilization. However, it has 
been reported that empagliflozin can increase serum 
ketone concentrations by activating the expression of 
the ketogenic enzyme HMGCS2 in other tissues [34]. 
Moreover, the frugal fuel hypothesis suggests that an 
increase in ketone body concentration is responsible for 
the increased efficiency of cardiac mitochondrial oxida-
tion in response to empagliflozin [35, 36]. In a subse-
quent experiment on the perfusion of isolated mouse 
hearts, researchers found that the addition of β-OHB to 
the system produced effects similar to those observed in 
response to empagliflozin. Therefore, we can conclude 

Table 1  (continued)

Drug Target Organ or tissue Model Effect

Dapagliflozin, Empagliflozin ERK/Bax; STAT3/Bcl-2; AMPK/
TNF-α; Caspase -3

Heart LPS-induced inflammation 
in mouse atrial myocytes; 
cardiorenal syndrome in 
rats; rats with cardiac I/R 
injury

Inhibit apoptosis [12, 32, 33]

Dapagliflozin AMPK/NLRP3/ASC/cas-
pase-1 pathway

Heart BTBR ob/ob mice Inhibit pyroptosis [34]

Empagliflozin CD36/AMPK/Ulk1/Beclin1 Heart ZDF rats Promote autophagy [4, 35]

Empagliflozin NHE1 and NHE1-related 
genes

Heart db/db mice with myocardial 
infarction

Inhibit autophagy [36]

Empagliflozin Beclin1 Heart Myocardial infarction with 
acute hyperglycaemia in 
mice

Inhibit autophagy [37]

Dapagliflozin SIRT1/PERK/eIF2α/ATF4/
CHOP

Heart Heart pressure-overload in 
mice; myocardial I/R injury 
in mice

Improve ER stress [38, 39]

Dapagliflozin Abundance of Akkermansia 
muciniphila

Gut Diabetic mice homozygous 
for a point mutation in the 
leptin receptor gene

Improve glucose tolerance 
and atherosclerosis [40]

Luseogliflozin, empagliflozin The abundance of SCFA-
producing bacteria

Gut db/db mice Improve glucose tolerance 
and atherosclerosis [41, 42]
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that empagliflozin increases blood ketone concentra-
tions, thereby increasing overall ketone utilization. This 
result was subsequently confirmed by a similar study 
[37].

SGLT2i and myocardial mitochondria
Aerobic respiration that occurs in the mitochondria of 
cardiomyocytes provides energy for cardiac contraction. 
Mitochondrial dysfunction occurs in diabetic cardiomy-
opathy as a consequence of high glucose, insulin resist-
ance, and obesity. The consequences of these pathological 
changes include but are not limited to increased mito-
chondrial fission, autophagy, reduced oxidative phospho-
rylation and impaired ATP production, the accumulation 
of metabolic intermediates and reactive oxygen species 
(ROS), oxidative stress, apoptosis, and impaired mechan-
ical function in the heart [38–40].

Mitochondria frequently divide and fuse with each 
other [41]. When cells are subjected to mild stress, mito-
chondria form an extensive interconnected network. 
When cells are severely stressed, mitochondria undergo 
fission and are fragmented [42]. In response to hypergly-
caemia, cardiomyocyte mitochondria undergo dynamin-
related protein 1 (Drp1)-mediated fission, which, if 
excessive, can result in fragmentation, ROS production, 
increased oxidative stress and even cell death [43]. Tana-
jak et al. [44] studied the inhibitory effect of SGLT2i on 
excessive mitochondrial fission after cardiac ischaemia/
reperfusion (I/R) injury in the hearts of obese rats with 
high-fat diet-induced insulin resistance. Dapagliflozin 
reversed the impairment in mitochondrial morphology 
and increased ROS levels. The total myocardial Drp1 pro-
tein level did not change significantly, but the myocardial 
mitochondrial Drp1 level decreased significantly [44]. 
The myocardial phosphorylation site Drp1 Ser-637 was 
activated by dapagliflozin, which may have accounted for 
the reduction in the mitochondrial translocation of Drp1 
[45]. These data are consistent with those of Zhou et al. 
[46], who reported that the upstream signalling molecule 
of Drp1 was AMPK. Mitochondrial fusion and fission are 
also associated with mitofusins (MFNs) and optic atrophy 
1 (OPA1). MFN1 and MFN2 mediate fusion of the mito-
chondrial outer membrane, OPA1 mediates inner mem-
brane fusion [47], and the absence of any one of the three 
causes cells to produce different types of fragmented 
mitochondria [48, 49]. Therefore, MFNs and OPA1 are 
targets of SGLT2i therapy. Durak et  al. [50] reported 
that dapagliflozin normalized the increase in MFN1, 
decrease in MFN2, and increase in OPA1 expression in 
the myocardium of rats with sucrose-induced metabolic 
syndrome. These results have also been reported for 
empagliflozin [51] (Fig. 1).

Mitochondrial biogenesis and the growth and division 
of preexisting mitochondria are regulated by AMPK, per-
oxisome-proliferator-activated receptor γ coactivator-1α 
(PGC-1α), and nuclear respiratory factors (NRF)-1 
and -2 [52]. AMPK activation was shown to increase 
the transcription of the PGC-1α gene in rat cell nuclei, 
which then induced the expression of the transcription 
factor NRF-1 [53]. Mitochondrial transcription factor 
A (mtTFA) is a mitochondrial promoter that stimulates 
transcription. The proximal promoter of the human 
mtTFA gene is dependent on the activity of the recogni-
tion sites of the nuclear respiratory factors NRF-1 and 
NRF-2 [54]. Activation of PGC-1α, NRF-1, and mtTFA 
increases the transcription and replication of mitochon-
drial DNA. PGC-1α can also activate the expression of 
key enzymes in mitochondria, including cytochrome 
c oxidase [55]. This will allow the mitochondrial elec-
tron transport chain (ETC) to increase the efficiency of 
electronic transfer. These regulators of mitochondrial 
biogenesis are inhibited to varying degrees in diabetes. 
However, empagliflozin reversed the downregulation of 
PGC-1α, NRF-1, and mtTFA in a streptozotocin (STZ)-
induced rat model of T2DM [51] (Fig. 1).

The transfer of electrons in the ETC generates mito-
chondrial membrane potential. The reduced activ-
ity of ETC complexes in the hearts of diabetes patients 
is accompanied by a reduction in the mitochondrial 

Fig. 1  SGLT2 inhibitors improve mitochondrial function. SGLT2 
inhibitors activate the AMPK/PGC-1α signalling pathway, thereby 
increasing PGC-1α-regulated NRF-1 expression, which increases 
mtTFA expression and further promotes mitochondrial biogenesis. 
PGC-1α can also inhibit Drp1-induced mitochondrial fission 
and activate key enzymes, including cytochrome c oxidase, in 
mitochondria, which can increase the efficiency of electron transfer. 
Activation of AMPK, on the other hand, leads to the recovery of 
abnormal MFN1, MFN2, and OPA1, reducing mitochondrial fission
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respiration rate [56]. The decreases in mitochondrial 
state 3 respiration and mitochondrial membrane poten-
tial in rats with STZ-induced diabetes were reversed by 
high-dose empagliflozin [51]. Secker et al. [57] found that 
canagliflozin inhibited the activity of mitochondrial res-
piratory complex I and promoted complex II activity, and 
empagliflozin and dapagliflozin increased the activity of 
complex I. Improvements in mitochondrial function by 
SGLT2i may be related to a decrease in O-GlcNAcyla-
tion. The increase in O-GlcNAcylation secondary to 
hyperglycaemia leads to a decrease in the activity of ETC 
complexes I, III, and IV. This change is mainly due to the 
O-GlcNAcylated subunits that make up the respiratory 
chain complexes [58]. Dapagliflozin and other SGLT2i 
may improve the function of the mitochondrial respira-
tory chain by directly reducing O-GlcNAc transferase 
activity and O-GlcNAcylation [59].

SGLT2i improve cardiovascular disease 
and microcirculation
Diabetes is known to increase the risk of cardiovascu-
lar events and cause myocardial microvascular com-
plications [60, 61]. Damage to vascular endothelial 
cells caused by oxidative stress is followed by a series of 
pathological changes that include vascular inflamma-
tion, vasoconstriction, thrombosis and atherosclerosis 
[62]. Diabetes and glycotoxicity promote coronary ath-
erosclerosis by exacerbating endothelial dysfunction and 
increasing oxidative stress, blood lipids, and autonomic 
dysfunction [63].

SGLT2i attenuate vascular inflammation
Vascular inflammation is mediated in part by mitochon-
drial fission, which is a complex mechanism involv-
ing tumour necrosis factor-α (TNF-α), Drp-1, NF-κB, 
and vascular cell adhesion molecule-1 (VCAM-1) [64]. 
Primary cultures of rat aortic endothelial cells trans-
duced with an adenovirus encoding a dominant-neg-
ative Drp1K38A mutant showed significant inhibition 
of TNF-α-induced NF-κB-driven promoter activity and 
VCAM-1 induction. These factors are responsible for 
chronic persistent inflammation and atherosclerosis [65]. 
SGLT2i were reported to improve endothelial function in 
mice with STZ-induced diabetes by inhibiting abnormal 
mitochondrial fission and endothelial inflammation [46]. 
The anti-inflammatory effect of empagliflozin on arte-
rial endothelial cells has been linked to the activation of 
AMPK and inhibition of Drp1 by the phosphorylation of 
Ser-637 [66].

Macrophage infiltration and polarization towards the 
M1 phenotype are key events in the development of 
atherosclerosis [67]. Macrophages can polarize to two 
phenotypes: M1 and M2. M1 macrophages exacerbate 

the inflammatory response, and M2 macrophages are 
involved in the resolution of inflammation [68]. In a 
mouse model of diabetes with atherosclerosis and hyper-
cholesterolemia, empagliflozin decreased the prolifera-
tion of plaque-resident macrophages and reduced the size 
of atherosclerotic plaques [69]. The mechanism involved 
reducing M1 phenotype polarization and increasing M2 
polarization in response to SGLT2i [70].

SGLT2i have also been reported to delay endothe-
lial cell senescence, and the effect may depend on 
angiotensin converting enzyme (ACE) activity and angi-
otensin type 1 receptor (AT1R). Angiotensin II induces 
endothelial senescence [71], and Khemais-Benkhiat 
et  al.[72] reported that hyperglycaemia increased the 
protein expression of ACE and AT1R and increased 
β-galactosidase, a biomarker of cellular senescence[73], 
in porcine coronary endothelial cells. Empagliflozin 
reversed these changes in the presence of hyperglycae-
mia but did not affect ACE or AT1R in control cells in the 
absence of hyperglycaemia [72].

Hyperuricaemia is another independent risk factor for 
diabetes. Uric acid levels increase in the early stages of 
impaired glucose metabolism, and hyperuricaemia is 
associated with micro- and macrovascular complications 
of diabetes [74, 75]. Uric acid concentrations higher than 
physiological levels inhibit NO synthesis, reduce NO 
activity and induce NF-κB, leading to the induction of 
monocyte chemoattractant protein 1 and cyclooxygenase 
2 (COX-2), which mediate inflammation and atheroscle-
rosis [76]. Chino et al. [77] found that the SGLT2i luse-
ogliflozin increased uric acid excretion and that GLUT9 
isoform 2 was involved. SGLT2i increased the concen-
tration of glucose in the proximal tubule, which caused 
GLUT9 isoform 2 and other transporters to reabsorb 
more glucose and excrete more uric acid. In the col-
lecting ducts, a high concentration of glucose prevents 
GLUT9 isoform 2 from reabsorbing uric acid (Fig. 2).

SGLT2i regulates diastolic and systolic flow in blood vessels
Studies have shown that flow-mediated dilation (FMD) is 
reduced in young T2DM patients relative to healthy indi-
viduals [78], and in coronary arteries, the maximal phar-
macologic flow reserve is significantly lower in diabetes 
patients than in healthy individuals [79]. Dapagliflozin 
has been shown to improve FMD in patients with T2DM 
[80], which may depend on the inhibition of COX-2. The 
increase in ROS production may involve COX-2/pros-
taglandin E2 (PGE2)/E-type prostaglandin receptor 4 
(EP4)/extracellular signal-regulated kinase 1/2 (ERK1/2)/
NADPH oxidase isoform 4 (Nox4) signalling [81]. 
Increased ROS resulting in vasoconstriction involves the 
initiation of calcium flux and stimulating pathways lead-
ing to the sensitization of contractile elements to calcium 
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[82]. Therefore, this kind of vasoconstriction can be 
inhibited by selective COX-2 inhibitors. SGLT2i inhibit 
COX-2 mRNA expression and vasoconstriction [83]. 
Vasodilation caused by selective COX-2 inhibitors was 
attenuated in genetically obese Zucker rats because the 
production of the vasodilator PGE2 promoted by COX-2 
in the endothelium was attenuated [84]. COX-2 inhibi-
tion can thus improve vasodilation over a limited range 
(Fig. 3).

Voltage-dependent K+ (Kv) channels regulate mem-
brane resting potential and vascular tone. The opening of 
smooth muscle Kv channels results in hyperpolarization 
and vasodilation [85]. Dapagliflozin activates Kv channels 
by directly activating protein kinase G (PKG) independ-
ent of guanylyl cyclase, resulting in endothelial-inde-
pendent vascular smooth muscle relaxation [86]. This 
kind of PKG/Kv channel signalling is effective and fea-
sible [87]. TNF-α levels are elevated in T2DM and may 
impair insulin signalling and lead to insulin resistance 
[88]. Uthman et  al. [89] reported that dapagliflozin and 
empagliflozin inhibited TNFα-induced ROS generation 
in human coronary arterial endothelial cells, and the sub-
sequent decrease in NO consumption was responsible 

for improved blood vessel dilatation. An increase in 
L-arginine synthesis may indirectly improve coronary 
flow reserves by increasing NO synthesis. L-arginine is a 
substrate for nitric oxide synthase (NOS), which converts 
arginine to NO. An increase in L-arginine synthesis in the 
kidneys and an increase in NO bioavailability in response 
to SGLT2i were reported to increase coronary flow veloc-
ity reserve in an ob/ob − / − mouse model [90]. SGLT2i 
may act directly on cardiomyocyte NHE1 to reduce cyto-
solic Na+. Empagliflozin and canagliflozin significantly 
decreased coronary perfusion pressure in isolated C57 
mouse hearts under constant-flow conditions, which was 
consistent with the dilation of coronary vessels [91].

SGLT2i increase microvessel density in the heart
The microvascular complications of diabetes include a 
reduction in the density of arterioles on the surface of the 
heart and have also been described in animal models of 
diabetes [92, 93].

Some SGLT2i promote angiogenesis. For exam-
ple, empagliflozin significantly reduced the loss of 
CD31 + microvessels and decreased the size of defects 
in zones of perfusion in diabetes model mice [46]. 

Fig. 2  SGLT2i can improve vasodilatory inflammation by decreasing 
uric acid levels. In proximal renal tubules, SGLT2i acts on SGLT2, 
decreasing the reabsorption of Na ions and glucose and increasing 
glucose concentrations in the lumen, which is exchanged with uric 
acid by GLUT9 isoform 2. This leads to increased uric acid exclusion. In 
the collecting duct, high levels of glucose inhibit this exchange and 
reduce the absorption of uric acid, thereby draining it. Lowering the 
concentration of uric acid in the blood helps reduce inflammation in 
the blood vessels

Fig. 3  SGLT2i can improve vasodilatory functions through COX-2. 
In endothelial cells, SGLT2i inhibit the production of ROS-induced 
PGH2 by inhibiting COX-2 and reduce the production of PGE2 and 
TXA2 downstream of PGH2. In vascular smooth muscle, although 
PGE2 activates EP4 receptors to dilate blood vessels, TAX2 activates 
TP receptors to cause vasoconstriction. In addition, downstream EP4 
can cascade into ERK1/2/NOX4 to produce ROS, which contributes 
to vasoconstriction and the activation of COX-2. In vascular smooth 
muscle, COX-2 activates and catalyses AA to produce PGH2, which 
constricts blood vessels
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In the model, empagliflozin activated AMPK via an 
increased AMP/ATP ratio that then led to the failure of 
Drp1 recruitment to the mitochondria and weakened 
mitochondrial fission. The resulting reduction in ROS 
production alleviated cell senescence and decreased 
F-actin dissolution into G-actin, which contributed to 
cardiac microvascular endothelial cell migration and 
neovascularization.

Unfortunately, some SGLT2i inhibit angiogenesis. For 
example, canagliflozin inhibited the in vitro proliferation 
of human umbilical vein endothelial cells and the forma-
tion of blood vessels in allograft liver tumours [11]. Cana-
gliflozin also inhibited angiogenesis in the lower limbs of 
mice with diabetes and lower limb ischaemia by inhibit-
ing the secretion of vascular endothelial growth factor 
A by bone marrow-derived mesenchymal stem cells and 
reducing the proliferation and migration of mesenchymal 
stem cells [12].

SGLT2i improve ventricular compliance 
and myocardial fibrosis
Myocardial fibrosis occurs in cardiomyopathy associ-
ated with diabetes, and it involves the accumulation 
of advanced glycation end products (AGEs) [94] and 
increased myocardial stiffness that interferes with ven-
tricular diastole. Chronic hyperglycaemia is accompa-
nied by the formation of AGEs that are produced by 
the nonenzymatic combination of glucose and proteins. 
Activation of the receptor for AGE (RAGE) by AGEs 
promotes the proliferation, function, and migration of 
cardiac fibroblasts, which exacerbates myocardial fibro-
sis and accelerates cardiac ageing [94–96]. AGEs, RAGE 
and downstream protein kinase C (PKC)-ζ and mitogen-
activated protein kinase (MAPK) promote tissue fibro-
sis. Activation of the MAPK subfamily ERK is the most 
significant event in this process. After being activated, 
ERK translocates to the nucleus, where it influences tran-
scription factors such as cAMP-response element bind-
ing protein, ETS domain-containing protein-1 and Y-box 
binding protein-1 to regulate cell proliferation, differen-
tiation, and extracellular matrix accumulation [94, 97, 
98]. Empagliflozin can inhibit the AGE/RAGE axis in the 
kidney, and it is believed that evidence in the heart will 
follow [99].

Transforming growth factor-beta (TGF-β) also regu-
lates tissue fibrosis via the SMAD protein, which is an 
intracellular effector downstream of the TGF-β receptor. 
Epithelial-myofibroblast transition and collagen expres-
sion are promoted by SMAD2 and SMAD3 and inhib-
ited by SMAD7 [100, 101]. A recent study showed that 
myocardial fibrosis was improved by SGLT2i [102]. In a 
mouse model of type 2 diabetes, myocardial expression 
of collagen I and collagen III proteins and connective 

tissue fraction was increased compared with that in non-
diabetic mice and was partially reversed by empagliflozin 
[102]. TGF-β/SMAD signalling was involved because, 
compared with that in untreated mice, the expression 
of TGF-β1, p-Smad2, and p-Smad3 in the heart tissue of 
mice treated with empagliflozin was significantly reduced 
(Fig.  4). Other studies have shown that blocking NOD-
like receptor 3 (NLRP3) reduced myocardial fibrosis 
[103]. Interleukin (IL)-1β promotes TGF-β gene expres-
sion and promotes fibrosis through the TGF-β pathway. 
Other reasons involve nonpolymeric NLRP3 protein, but 
the mechanism is not very clear [104]. The TGF-β path-
way is discussed in the pyroptosis section of this review 
(Fig. 5).

Diabetes increases the risk of myocardial infarction 
[60], and the infarct size is larger in patients with dia-
betes than in those without diabetes [105]. SGLT2i have 
been shown to improve ventricular remodelling after 
myocardial infarction and to alleviate cardiac fibrosis 
by modulating macrophage polarization. The mecha-
nism is similar to that for atherosclerosis, as previously 
discussed. Studies have shown that in the postmortem 
myocardium, IL-10 can indirectly affect fibroblast activa-
tion by stimulating M2 macrophage polarization, thereby 
significantly reducing the level of collagen I, reducing the 
ratio of collagen I to collagen III in cardiac fibroblasts, 
and reducing collagen accumulation in the infarcted area 
of the mouse heart [106]. The increase in collagen I leads 
to increased fibril width and stiffness [107]. The effect of 
SGLT2i on this pathway was demonstrated by Lee et al. 
[108], who found that dapagliflozin induced macrophage 
polarization to the M2 phenotype and inhibited the M1 
phenotype by stimulating signal transducer and activator 
of transcription 3 (STAT3) signalling in mice with myo-
cardial infarction and attenuated the increase in collagen 
after infarction.

The effect of diabetes on ventricular diastolic dysfunc-
tion may be related to a reduction in cyclic guanosine 
monophosphate (cGMP) and a decrease in PKG activity 
because of increased nitrosative and oxidative stress and 
decreased bioavailability of NO [109, 110]. Oxidative and 
nitrosative stress caused by diabetes are discussed later 
in this review. PKG phosphorylates N2BA and N2B, the 
two main cardiac titin isoforms in the human left ventri-
cle, resulting in a decrease in cardiomyofibrillar stiffness 
[111]. In human myocardial tissue from patients with 
heart failure with preserved ejection fraction (HFpEF) 
and ZDF obese rats, PKGIα was oxidized and was pre-
sent as a dimer or polymer in the cardiomyocyte cell 
membrane. Empagliflozin decreased PKGIα oxidation 
and translocation of the reduced form into the cyto-
plasm of cardiomyocytes. Empagliflozin restored the 
damaged NO/soluble guanylate cyclase (sGC)/cGMP/
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PKG pathway in the HFpEF myocardium, significantly 
increased NO and cGMP concentrations, and increased 
sGC and PKGIα activity [112], which reduced cardio-
myocyte stiffness. These changes were observed macro-
scopically. Echocardiography after intravenous injection 
of empagliflozin revealed significantly improved diastolic 
ventricular function in HFpEF rats and in humans [113].

SGLT2i inhibit oxidative stress
Oxidative stress results from an imbalance in oxidative 
and antioxidative activity, and an excess of intermediate 
oxidative products damages cells. Hyperglycaemia and 
glucotoxicity result in oxidative stress in diabetes [114, 
115], which is associated with lower antioxidant lev-
els and higher oxidant levels than those in the absence 
of diabetes [116]. Therefore, a decrease in oxidative 
stress in the myocardium of diabetic patients would 
be key supporting evidence of their benefit in diabetic 
cardiomyopathy.

SGLT2i reduce the production of oxidative intermediates
AMPK/Akt/endothelial nitric oxide synthase (eNOS) 
signalling may confer myocardial protection in diabetes. 
Oxidative stress and other pathologies uncouple eNOS, 
which is accompanied by abnormal electron transfer, and 
increase the production of ROS but not NO [117, 118], 
causing tissue damage. There is evidence that canagliflo-
zin can activate eNOS in the myocardium and kidney. 
In an isoprenaline (ISO)-induced oxidative stress model, 
the phosphorylation of eNOS was significantly inhib-
ited in the heart and kidney and was reversed by cana-
gliflozin [119, 120]. Rescue was blocked by an AMPK 
inhibitor, which is consistent with the effect of AMPK/
Akt signalling on canagliflozin activity. Another study 
reported that empagliflozin increased eNOS activity in 
the myocardium of obese mice fed a high-fat diet [121]. 
This evidence indicates that SGLT2i decrease oxidative 
stress, ROS and nitrate in tissues. The physiology of NO 
produced by NOS is well known. Inducible nitric oxide 
synthase (iNOS) differs from neurogenic nitric oxide 
synthase (nNOS) and eNOS and is associated with local 
inflammation [122, 123]. Compared with eNOS and 
nNOS, iNOS forms more superoxide and causes nitra-
tive stress, which is effective for killing and inhibiting 
pathogens but also injures cells [124]. In an ISO-induced 

oxidative stress model, myocardial expression of iNOS 
was upregulated more than 3  times, but canagliflozin 
significantly reduced iNOS levels, which also decreased 
superoxide and nitrate [119]. Nox4 signalling has also 
been shown to induce iNOS [125]. Increased Nox4 activ-
ity has been associated with increased ROS production 
[126], and in an ISO-induced model of oxidative stress in 
mice, canagliflozin decreased Nox4 protein expression in 
the heart and kidney [119, 120].

SGLT2i increases antioxidant activity
The nuclear factor erythroid factor 2 (Nrf2)/heme oxyge-
nase (HO-1) pathway plays an important role in protect-
ing cells when oxidative stress occurs in animal models. 
The activation of Nrf2 and HO-1 increased the expres-
sion of superoxide dismutase (SOD) and glutathione 
(GSH) and decreased the expression of malondialdehyde 
(MDA) compared with that in the control group with-
out Nrf2 and HO-1 activation [127–129]. In a T2DM 
model, lipid hydroperoxide and MDA levels were sig-
nificantly increased compared with those in the control 
group, and glutathione peroxidase (GSH-Px) and SOD 
were reduced. Empagliflozin could partially reverse the 
differences between the diabetes and control groups, 
indicating that oxidative stress was improved [102]. The 
mechanism of action involved activation of the Nrf2/
HO-1 pathway. In other studies, canagliflozin had simi-
lar effects. Myocardial oxidative stress caused by ISO 
manifested as increased levels of MDA, advanced protein 
oxidation products, and myeloperoxidase and decreased 
levels of catalase, SOD, and GSH in the myocardium and 
plasma. The responses to ISO were reversed by cana-
gliflozin treatment with a synchronous increase in Nrf2 
[119].

Silencing information regulator 2 related enzyme 1 
(SIRT1) regulates genes that attenuate oxidative stress 
in T2DM [130]. SIRT1 could decrease oxidative stress 
in diabetic cardiomyopathy [131, 132]. SGLT2i activate 
SIRT1 and its downstream signals [133, 134], which helps 
to explain how SGLT2i decrease oxidative stress in dia-
betic cardiomyopathy. The antioxidant effect induced by 
the activation of SIRT1 in T1DM diabetic cardiomyopa-
thy mainly includes the SIRT1/Nrf2 signalling pathway 
[131], while in T2DM, it includes the Sirt1/forkhead box 
class O1 (FOXO1) signalling pathway [132]. Antioxidant 

(See figure on next page.)
Fig. 4  Histological data on the improvements in myocardial fibrosis by empagliflozin [102]. SGLT2 inhibitor empagliflozin played an important role 
in improving myocardial fibrosis of diabetic mice (genetic type 2 diabetes model) through reducing the expression of relevant signaling molecules 
and collagen. Compared with diabetic mice without empagliflozin treatment, it significantly reduced the expression of TGF-β1, p-Smad2, 
p-Smad3, collagen I, and collagen III. This kind of improvement represented the reduction in matrix accumulation and the betterment of ventricular 
compliance. Copyright 2019, Cardiovasc Diabetol.
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Fig. 4  (See legend on previous page.)
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activity mediated by SIRT1/FOXO1 was mediated by 
increased phosphorylation of SIRT1 and decreased acet-
ylation of FOXO1. Deacetylation of FOXO1 by SIRT1 
increases the transcription of cell cycle arrest genes, 
including those encoding antioxidant enzymes such as 
SOD2 [135].

In diabetes patients, SGLT2i rescue cardiomyocytes 
from programmed cell death
Diabetes promotes programmed cells in the myocardium 
[136, 137], which results in decreased cardiac contractil-
ity, heart failure, and other complications. In the classic 
apoptosis pathway, the activation of caspase-3, caspase-6 
and caspase-7 causes membrane blebbing, cell shrinkage, 

the formation of apoptotic bodies, and chromosomal 
DNA fragmentation. The pyroptosis pathway is mediated 
by caspases-1, -4, -5, and -11, which can cleave the cyto-
solic protein gasdermin D, and the latter can form large 
oligomeric pores in the inner layer of the plasma mem-
brane and intracellular organelles to kill the cell [138].

SGLT2i and myocardial apoptosis
Research on the inhibitory effect of SGLT2i on caspase-3 
in the myocardium has begun. Trang et al. [139] showed 
that the levels of ERK1/2 and the proapoptotic gene 
Bax, which was promoted by ERK1/2, were increased, 
the level of pSTAT3, which can upregulate the expres-
sion of the antiapoptotic protein Bcl-2, was decreased, 

Fig. 5  The SGLT2 inhibitor improves pyroptosis and reduces cardiac fibrosis. Activation of AMPK by the SGLT2 inhibitor decreases the expression 
of downstream NLRP3, Caspase-1 and ACS. Therefore, the upregulation of the NLRP3 inflammasome complex is inhibited, which reduces the 
transformation of procaspase-1 to active caspase-1 and the transformation of proIL-1β and proIL-18 to IL-1β and IL-18, respectively, to inhibit 
pyroptosis. As a result of the decrease in IL-1β, the activation of IL-1βR is correspondingly decreased, and the expression of TGF-β in the downstream 
signalling pathway is reduced, resulting in a relative reduction in fibrosis
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and the level of caspase-3 was increased in STZ-induced 
diabetic rat hearts. However, empagliflozin treatment 
changes these indicators to varying degrees [139]. Bax 
promotes mitochondrial outer membrane permeabil-
ity, which results in the release of proapoptotic factors 
such as cytochrome c from the mitochondria into the 
cytoplasm to activate the caspase cascade [140]. Bcl-2 
prevents the release of cytochrome c, thereby inhibiting 
the caspase cascade [141]. It is clear that inhibition of the 
ERK1/2 pathway and promotion of the STAT3 pathway 
by SGLT2i decrease cardiomyocyte apoptosis. In addi-
tion, high serum LPS originating from the gut microbiota 
contributes to myocardial inflammation and cell death in 
diabetes patients (see below). Koyani et al. [70] reported 
that empagliflozin reduced the LPS-induced increase in 
TNF-α levels associated with increased AMPK phospho-
rylation. TNF-α is known to activate caspase-3 via the 
caspase-12 cascade to induce cardiomyocyte apoptosis 
[142]. In animal models of heart I/R injury and hepa-
torenal syndrome, early administration of SGLT2i was 
reported to downregulate cleaved caspase-3 [143, 144], 
which is consistent with our expectations.

SGLT2i and myocardial pyroptosis
Recent studies reported that SGLT2i inhibited caspase-1 
and that the mechanism involved a pathway including 
AMPK/NLRP3/apoptosis-associated speck-like pro-
tein containing a CARD (ASC) [145–148]. Activation 
of Toll-like receptors (TLRs)/NF-κB and an increase in 
the transcription of inflammasome-related components, 
including inactive NLRP3, proIL-1β, and proIL-18. The 
oligomerization of inactive NLRP3, ASC, and procas-
pase-1 and the formation of an NLRP3-inflammasome 
complex [149] catalyse the conversion of procaspase-1 
to caspase-1 and cause pyroptosis [150, 151]. The mRNA 
expression of NLRP3, ASC, IL-1β, and caspase-1 in car-
diomyocytes did not increase significantly in wild-type 
mice but did so in the myocardia of type 2 diabetic (BTBR 
ob/ob) mice [152]. Dapagliflozin was not associated with 
the expression of NLRP3, ASC, IL-1β, or caspase-1 in 
normal wild-type mice but did reverse these factors in 
BTBR mice. Researchers then investigated the detailed 
mechanism of these changes. LPS increased the mRNA 
expression of NLRP3 and caspase-1 and decreased the 
P-AMPK/total-AMPK ratio in cardiac fibroblasts in wild-
type and BTBR mice. Preincubation of cardiac fibroblasts 
with dapagliflozin attenuated the changes in the mRNA 
expression of NLRP3 and caspase-1 and the ratio of 
P-AMPK/total AMPK induced by LPS in wild-type and 
BTBR mice [152]. This finding suggests that the effective-
ness of dapagliflozin was associated with AMPK, which 
was also reported in Chen et al. [153] (Fig. 5).

SGLT2i and autophagy in the myocardium
Autophagy digests long-lived proteins and cytoplasmic 
organelles to meet the metabolic needs of the cell and 
the renewal of certain organelles [154, 155]. Autophagy 
imbalance and disruption occur in diabetes. Acute 
induction of autophagy may be beneficial, but persis-
tent autophagy induction may be harmful [156, 157].

The effects of SGLT2i on autophagy have been stud-
ied in diabetic cardiomyopathy. Empagliflozin has 
been reported to increase autophagy in the atrial tis-
sue of ZDF rats. This treatment increased the micro-
tubule-associated protein light chain 3 (LC3) II/I ratio 
and decreased the protein expression of p62 in the 
atrial tissues of ZDF rats [25]. Li et  al. [158] reported 
that empagliflozin decreased the protein expression 
of CD36, which was associated with an increase in 
p-AMPK, which activated the AMPK/Unc-51-like 
kinase 1 (Ulk1)/Beclin1 pathway, increased Ulk1 and 
Beclin1 expression, and promoted autophagy. This 
process in liver cancer cell experiments does not seem 
to involve mammalian target of rapamycin (mTOR). 
However, dapagliflozin decreased p-mTOR/mTOR in 
rat colitis model cells, suggesting that the inhibition 
of mTOR by AMPK [159] is involved in AMPK-medi-
ated enhancement of autophagy [160]. The difference 
might be related to nutritional status in the two models 
because AMPK activates Ulk1 to promote autophagy 
during glucose starvation. In the presence of adequate 
nutrients, high mTOR activity phosphorylates Ulk1 at 
Ser 757, which disrupts the interaction between Ulk1 
and AMPK to prevent Ulk1 activation [161].

SGLT2i do not enhance autophagy unilaterally. Jiang 
et al. [162] reported that in T1DM or T2DM and myo-
cardial infarction, cardiomyocyte survival benefitted 
from the inhibition of enhanced autophagy by empa-
gliflozin, which depended on the downregulation of 
NHE1 and NHE1-related genes that induce autophagy, 
such as Beclin 1 and autophagy-related protein 5. In 
fact, the inhibitory effect of SGLT2i on NHE1 has been 
widely demonstrated [163], but it is not clear whether 
Beclin1 is a downstream target of NHE1. Deng et  al. 
[164] found that Beclin1 but not NHE1 was targeted 
by empagliflozin. Empagliflozin was shown to inhibit 
the increase in autophagy caused by myocardial infarc-
tion with acute hyperglycaemia. Empagliflozin can also 
reverse the increase in the autophagy-related protein 
LC3II/I and decrease in P62 in cardiomyocytes induced 
by Tat-beclin1. This difference may be related to the dif-
ference in mouse models; the former model is a T2DM 
model with myocardial infarction, and the latter model 
is a nondiabetic myocardial infarction model with 
acute hyperglycaemia. However, these results show 
that the regulatory effect of empagliflozin on autophagy 
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involves maintaining a balance, rather than unilaterally 
enhancing or weakening autophagy.

SGLT2i reverse ER stress in diabetic 
cardiomyopathy
ER stress involves disturbances in Ca2+ or redox bal-
ance and the accumulation of misfolded or unfolded 
proteins that cannot be processed, which initiates an 
unfolded protein response (UPR) that leads to apopto-
sis [165]. The UPR involves three transducers: protein 
kinase RNA-like endoplasmic reticulum kinase (PERK), 
activated transcription factor 6 (ATF-6) and inositol-
requiring protein-1α (IRE1α). The transducers bind to 
the ER chaperone glucose-regulated protein 78 (GRP78), 
and as unfolded proteins accumulate, GRP78 leaves the 
transducer and is involved in processing the accumulated 
proteins [166]. This leads to the activation of these three 
sensors and subsequent lethal effects [167]. Currently, 
the correlation between diabetes and ER stress has been 
well established [168].

PERK/eIF2α/ATF4/C/EBP-homologous protein 
(CHOP) are signalling pathways involved in ER stress. 
CHOP is a transcription factor that downregulates 
BCL2, BCL-XL, and MCL-1 expression and upregulates 
Bim, Bak and Bax expression. CHOP also upregulates 
the expression of the pseudokinase tribbles homologue 
3 gene, which was shown to weaken the inhibition of 
Caspse-9 and Caspase-3 expression by AKT [169–171].

SGLT2i ameliorate ER stress in animal models induced 
by heart-pressure overload or I/R injury [172, 173]. 
In these ER stress models induced by heart pressure 
overload or I/R injury, dapagliflozin and empagliflozin 
inhibited the increase in p-PERK and its downstream 
molecules associated with ER stress due to pressure 
overload by activating SIRT1 and preventing GRP78 
detachment [172, 173]. Cell death was also significantly 
weakened. Dapagliflozin could significantly reduce 
GRP78, PERK, eIF-2α, ATF-4, and CHOP expression in 
the myocardium in an ER stress model induced by doxo-
rubicin [174] (Fig. 6). SGLT2i have been shown to inhibit 
ER stress through similar downstream pathways in vari-
ous organs. Ipraglifilozin inhibited the increase in GRP78 
and PERK and their downstream signalling molecules 
associated with ectopic lipid deposition in mouse kidneys 
[175].

SGLT2i improve diabetic cardiomyopathy 
by regulating the intestinal microbiota
The impact of intestinal flora imbalance on extraintes-
tinal organs has received increasing attention in recent 
years, and the heart is no exception. The damaged intes-
tinal wall can lead to the entry of intestinal bacteria into 

the circulation, causing inflammatory responses in mul-
tiple organs [176]. After entering the circulation, LPS 
from gram-negative bacteria is recognized by TLRs on 
the surface of immune cells and induces the release of 
proinflammatory cytokines [177]. Continuous infusion 
of low-dose LPS to mimic metabolic endotoxaemia leads 
to obesity, insulin resistance, T2DM, and atherosclerosis 
[178]. The metabolism of cholesterol and lipids by the 
gut microbiota affects the development of atheroscle-
rotic plaques [179], and bacterial metabolites, such as 
trimethylamine N-oxide (TMAO), were shown to lead 
to myocardial fibrosis, abnormal metabolism, impaired 
endothelial function, and heart failure following the acti-
vation of various signalling pathways [180]. These patho-
logical changes are consistent with the development of 
diabetic cardiomyopathy.

Dapagliflozin has been associated with changes in the 
gut microbiota, the function of extraintestinal blood ves-
sels, and improvements in cardiovascular dysfunction 
caused by diabetes. Eight weeks of dapagliflozin treat-
ment significantly increased Akkermansia muciniphila 
in the gut microbiota and improved generalized vascu-
lar dysfunction in mice with T2DM [181]. An increase 
in the abundance of A. muciniphila and improvements 
in glucose tolerance and blood glucose levels have been 
confirmed and correlated with induction of Foxp3-pos-
itive regulatory T cells [182]. An increase in A. mucin-
iphila was also shown to reduce endotoxaemia and 
inflammation and prevent atherosclerosis by inducing 
the expression of tight junction proteins in the gut [183]. 
In addition, short-chain fatty acids (SCFAs) have been 
shown to thicken the mucin layer and strengthen the 
intestinal barrier by stimulating the release of IL-22 from 
lymphocytes, which prevents endotoxins and LPS from 
entering the body [184, 185]. Luseogliflozin increased the 
abundance of Syntrophothermus lipocalidus, family Syn-
trophomonadaceae, Parabacteroidesdistasonis distasonis, 
and genus Anaerotignum, which produce SCFAs [186]. 
Empagliflozin has been associated with an increase in the 
population of SCFA-producing bacteria and improve-
ments in diabetes and cardiovascular function [187]. 
Roseburia, Eubacterium, and Faecalibacterium species 
were increased by empagliflozin treatment, and harm-
ful bacteria, including Escherichia and Shigella, were 
decreased.

SGLT1 is the predominant receptor in the gut com-
pared with SGLT2 [188]. Studies of the dual SGLT1/2 
inhibitor canagliflozin and the SGLT1 inhibitor 
SGL5213 showed that these agents reversed the expan-
sion of Firmicutes and contraction of Bacteroidetes 
in the gut microbiota of mice with adenine-induced 
renal failure [189, 190]. Increases in SCFAs such as 
acetate, butyrate, and propionate in the caecum and 
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decreases in plasma TMAO levels were also found in a 
renal failure mouse model after treatment. These find-
ings suggest that inhibition of SGLT1 reduces glucose 
uptake, while unabsorbed glucose temporarily reaches 
the lower small intestine [191], resulting in an altered 
glucose load and a possibly altered gut microbiota 
composition.

SGLT2i in clinical treatment
The goal of basic research is to support clinical use. We 
have reviewed animal and clinical trials that evaluated 
the therapeutic effect of SGLT2i. The results of some 
animal trials support the performance of clinical trials. 
Here, we show some representative clinical evidence in 
response to the results of theoretical research (Table 2).

Fig. 6  The SGLT2 inhibitor improves ER stress. SGLT2 inhibitor treatment inhibits the loss of GRP78 from transducers by activating Sirt1, thus 
inhibiting the development of ER stress. The downstream signalling pathways of PERK, ATF6 and IRE1α can induce the transcription of CHOP. 
CHOP upregulates the expression of the pseudokinase tribbles homologue 3 gene and weakens the inhibitory effect of AKT on the expression of 
caspase-9 and caspase-3. On the other hand, CHOP promotes the expression of Bax and Bak and inhibits the expression of Bcl-2, Bcl-XL and MCL-1. 
IRE1α also promotes apoptosis by sequentially activating ASK1 and JNK
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First, SGLT2i improves myocardial metabolism in 
diabetic patients. SGLT2i (dapagliflozin, empagliflozin, 
canagliflozin) reduce the expression of PPAR-γ in the 
hearts of patients. Similar to the mechanism described 
above, this effect can reduce the accumulation of fatty 
acids in myocardial cells [192], which is exactly what 
happened.

Empagliflozin is encouraging in terms of improving 
ventricular remodelling in diabetic patients. For exam-
ple, in a clinical randomized controlled trial, the SGLT2i 
empagliflozin significantly reduced the left ventricular 
mass relative to body surface area [193]. Similarly, a ran-
domized controlled trial of dapagliflozin demonstrated 
a significant reduction in left ventricular mass (LVM) 
in patients with T2DM and left ventricular hypertrophy 
(LVH) [194].

In diabetes patients with atherosclerotic disease, 
endothelial changes occur in the microvasculature and 
macrovasculature, and 12  weeks of dapagliflozin treat-
ment resulted in a significant increase in FMD [195]. 
Another study demonstrated that 4 weeks of dapagliflo-
zin increased myocardial flow reserve (MFR) in patients 
with stable coronary artery disease and T2DM [196]. In 

addition, clinical studies have confirmed that dapagliflo-
zin can prevent microcirculation remodelling in diabetes 
patients and can decrease the stiffness of large blood ves-
sels [197]. T2DM patients with acute myocardial infarc-
tion (AMI) who had received long-term treatment with 
SGLT2i before admission had smaller infarct sizes and 
lower inflammatory markers than those receiving other 
oral hypoglycaemic agents [198].

The effectiveness of SGLT2i for improving hyperuri-
caemia has been clinically verified. Dapagliflozin, empa-
gliflozin, and canagliflozin have been shown to promote 
uric acid excretion in patients with or without diabetes 
[199–201]. This evidence shows that SGLT2i maintain 
cardiovascular function and reduce the risk of cardiovas-
cular events.

The regulation of intestinal flora by SGLT2i is less 
clear. In a 12 week double-blind randomized trial, signifi-
cant changes in gut microbiota diversity or composition 
were not observed in T2DM patients after dapagliflozin 
treatment [202]. The results may have been influenced 
by the administration of other drugs, including previ-
ous metformin monotherapy. In addition, the doses of 

Table 2  Effect of SGLT2i in clinical treatment

Drugs Type Object Follow-up period Effect of outcome

Multiple SGLT2i Clinical trial 77 first heart transplant recipi-
ents (37 patients with diabetes)

At least 6 months before surgery 
and 12 months after surgery

Reduce myocardial triglyceride 
accumulation [1]

Empagliflozin Randomized controlled trial 97 participants with T2DM and 
coronary artery disease (CAD)

6 months Reduce LVM indexed to body 
surface area [2]

Dapagliflozin Randomized controlled trial 66 patients with T2DM and LVH 12 months Reduce absolute LVM [3]

Dapagliflozin Randomized controlled trial 97 patients with T2DM and 
atherosclerotic disease

12 weeks Increase FMD [4]

Dapagliflozin Randomized controlled trial 16 patients with T2DM and 
stable coronary artery disease

4 weeks Increase MFR [5]

Dapagliflozin Clinical trial 59 patients with T2DM 6 weeks Improve vascular remodelling [6]

Multiple SGLT2i Observational study 583 diabetic AMI patients 
treated with percutaneous 
coronary intervention (PCI)

The use of SGLT2i started at least 
3 months before hospitalization

Reduce infarct size after AMI [7]

Empagliflozin Clinical trial 1549 patients with T2DM 104 weeks Reduce blood uric acid concen-
tration [8]

Dapagliflozin Clinical trial 3119 patients with heart failure 12 months Reduce blood uric acid concen-
tration [9]

Canagliflozin Clinical trial 2313 patients with T2DM 26 weeks Reduce blood uric acid concen-
tration [10]

Dapagliflozin Randomized controlled trial 44 patients with T2DM 12 weeks Did not change the composition 
of the gut flora [11]

Multiple SGLT2i Meta-analysis 38,335 patients with type 2 
diabetes

Median follow-up duration was 
1.8 years

Reduce the risk of AF and AFL [12]

Multiple SGLT2i Meta-analysis 1831 patients with acute heart 
failure with and without T2DM

Ranged from 60 days to 
9 months

Reduce the risk of rehospitaliza-
tion for heart failure and improve 
KCCQ score [13]

Multiple SGLT2i Meta-analysis 10978 patients with T2DM with 
or without chronic heart failure

Ranged from 14 days to 1 year Reduce NT-proBNP concentra-
tions and improve cardiac dias-
tolic function and LVEF [14]
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dapagliflozin that are appropriate for treating diabetes 
may not be appropriate for regulating the gut microbiota. 
Additional studies of the impact of SGLT2i on the human 
intestinal microbiota are needed.

Several meta-analyses have provided more extensive 
and persuasive evidence that SGLT2i improve diabetes-
induced cardiac insufficiency. T2DM increases the risk 
of atrial fibrillation (AF) and atrial flutter (AFL), and 
dapagliflozin significantly reduces AF and AFL [203]. 
Treatment of patients with AHF with SGLT2 inhibi-
tors reduced the risk of rehospitalization due to heart 
failure and improved Kansas City Cardiomyopathy 
Questionnaire (KCCQ) scores [204]. SGLT2i improved 
diabetes-associated cardiac structure and function. A 
meta-analysis showed that SGLT2i partially reduced 
plasma NT-proBNP concentrations and improved car-
diac diastolic function. However, SGLT2i improve left 
ventricular ejection fraction (LVEF) only in heart failure 
with reduced ejection fraction (HFrEF) in stage C heart 
failure [205]. On the other hand, in patients with HFpEF, 
especially those with stage A-B heart failure, the effect of 
SGLT2i treatment is not significant.

Current challenges and future therapeutic 
strategies
SGLT2i are safe, well-tolerated drugs. They can improve 
all glycaemic parameters and have some additional ben-
efits, such as weight and BP reductions, low risk of hypo-
glycaemia, improvements in β-cell function and insulin 
sensitivity, and reductions in macrovascular and micro-
vascular events [206]. However, there are still many 
challenges to be solved in clinical practice. These chal-
lenges include but are not limited to decreased blood 
pressure, urinary and genital tract infections, amputa-
tion, ketoacidosis, kidney injury and fracture. Reduced 
blood pressure in SGLT2i users is understandable, 
which is caused by insufficient circulating blood vol-
ume due to osmotic diuresis. Meta-analyses showed that 
SGLT2i induced an average reduction in systolic/dias-
tolic BP of 3.62/1.70  mmHg in 24  h ambulatory blood 
pressure [207]. However, the use of SGLT2i alone was 
very unlikely to cause postural hypotension. The use of 
SGLT2i has been reported to increase the risk of urinary 
and genital tract infections by more than 3  times [208]. 
The main reason may be related to the increase in urine 
sugar concentration. As previously mentioned, cana-
gliflozin caused twice the risk of lower limb amputation 
compared to the control, possibly due to the inhibition 
of angiogenesis [209]. An increased incidence of ketoaci-
dosis has been reported in SGLT2i users [210]. The 
prevailing belief is that this outcome is associated with 
glucose loss, increased hyperglucagonemia, constant or 
decreased insulin levels, mild infections, and decreased 

blood volume. This mechanism may induce euglycae-
mic diabetic ketoacidosis. The evidence that SGLT2i may 
cause acute renal injury is available [211], and the asso-
ciated factors include circulatory failure, increased uric 
acid in urine, and multiple drug use [212, 213]. However, 
this treatment is not recognized as an inducer of acute 
renal injury, and several clinical trials have confirmed that 
SGLT2i have positive effects on kidney function [214]. In 
assessing the increased risk of fracture associated with 
SGLT2i, canagliflozin was directly associated with bone 
mineral density loss, especially in the hip. Dapagliflozin 
was associated with fractures unrelated to osteoporosis, 
mainly due to an increased risk of falls caused by fluctua-
tions in blood pressure and hypoglycaemia caused by the 
combined use of hypoglycaemic drugs. However, empa-
gliflozin was considered safe [215]. In addition, there are 
still some unresolved questions. The limited clinic evi-
dence showed that SGLT2i improves the concentration 
of circulating proteins in plasma, serum or urine that 
are known to have beneficial effects on the heart [216]. 
These proteins include insulin-like growth factor-binding 
protein 1, transferrin receptor protein 1, erythropoietin 
and so on. But the exact target and signalling pathway of 
SGLT2i in clinic treatment are still not fully understood. 
The optimal dose of SGLT2i for diabetic cardiomyopathy 
and whether this dose is consistent with the dose for dia-
betic treatment still need experimental verification [217, 
218].

In light of the current challenges associated with 
SGLT2i, we reviewed some of the guidelines and pro-
vided some insight into future strategies for the use of 
SGLT2i [218]. The use of SGLT2i is strongly recom-
mended in patients with HFrEF and with or without 
T2DM, patients with T2DM and coronary heart disease, 
patients with T2DM were over 50  years old who had 
risk factors associated with coronary heart disease, and 
patients with albuminuric renal disease with or with-
out T2DM. The benefits of SGLT2i on these patients 
have been well documented and reduce the risk of HF 
hospitalization. Moreover, we may avoid some possible 
complications by individualized medications and appro-
priate periodic examinations. For patients with suspected 
ketoacidosis symptoms such as nausea, vomiting, abdom-
inal pain, and dyspnoea during SGLT2i use, blood and 
urine ketone body analysis should be performed in time. 
Patients who use SGLT2i should be advised to pay atten-
tion to perineal hygiene. For patients with urinary tract 
infection during medication use, SGLT2i administration 
should be paused, and anti-infective therapy should be 
given. SGLT2i should be discontinued in patients with 
recurrent urinary tract infections. Patients taking SGLT2i 
and diuretics together need to monitor their blood pres-
sure. Canagliflozin is contraindicated in patients with 



Page 17 of 23Huang et al. Cardiovascular Diabetology           (2023) 22:86 	

lower extremity vascular stenosis or with osteoporosis. 
For renal insufficiency, patients with glomerular filtration 
rates less than 30 mL/min/1.73 m2 should be treated with 
low-dose SGLT2i or not treated with SGLT2i.

Conclusions
In this review, we mainly focused on basic studies to elu-
cidate the pharmacological mechanism of SGLT2i and 
related signalling pathways or targets for the treatment 
of diabetic cardiomyopathy. Studies have shown that 
SGLT2i can improve diabetic cardiomyopathy by improv-
ing myocardial metabolism, restoring mitochondrial 
function, improving microcirculatory disorders, reducing 
myocardial fibrosis, reducing oxidative stress, inhibiting 
programmed death, regulating autophagy, inhibiting ER 
stress and regulating the intestinal flora. In addition, we 
present representative clinical trials demonstrating the 
beneficial effects of SGLT2i in clinical use. Finally, we 
briefly discuss the current challenges and possible future 
strategies for the utilization of SGLT2i.

Our aim was to arouse more attention from read-
ers through this review to further explore the poten-
tial mechanisms and targets of SGLT2i in the treatment 
of diabetic cardiomyopathy in the clinic and lay a solid 
foundation for the reasonable use of SGLT2i; SGLT2i 
can save more patients with diabetic cardiomyopathy. In 
addition, these findings could help in the development of 
new drugs for diabetic cardiomyopathy based on relevant 
signals or therapeutic targets.
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